The Usual Suspects

- Socialization
- Faculty Mentors
- Cumulative Advantage
- Supplemental Interventions
Socialization
Socialization

The process by which people selectively acquire the values and attitudes, the interests, skills and knowledge – in short, the culture – current in the groups to which they are, or seek to become a member. It refers to the learning of the social roles.

––Merton, Reader, & Kendall (1957, pp. 40-41)

A process of internalizing the expectations, standards, and norms of a given society, which includes learning the relevant skills, knowledge, habits, attitudes, and values of the group that one is joining.

––Austin & McDaniels (2006, p. 400)
Socialization

Interactive Stages of Socialization: Anticipatory, Formal, Informal, Personal
Socialization
Proposition 1:

Patterns of student-faculty and student-peer interactions

Demographic characteristics
(1) international status
(2) gender

(1) Research self-efficacy
(2) Research skills
Measures (Jeong et al., 2018a; AERA)

Interaction with faculty and peers (8 items)

- "Is there a professor or any student in your department with whom you..."
- Item1,5. Sometimes engage in **social conversation**
- Item2,6. Often discuss **topics in his/her field**
- Item3,7. Often discuss **other topics of intellectual interest**
- Item4,8. Ever talk about **personal matters**

Research self-efficacy (10 items)

- "To what extent do you feel you can observe and collect data?"
- Kardash (2000)

Performance in research skills (13 skills)

- Written **research proposals** or reports using a rubric
- Feldon et al. (2011)
Analyses

RQ1
Patterns of student-faculty and student-peer interactions
Latent class analysis

Pearson's chi-square tests

RQ2

Demographic characteristics
(1) international status
(2) gender

RQ3
(1) Research self-efficacy
(2) Research skills

2 × 3 MANCOVA
(Interaction effects, controlling for Year1 research performance and nesting of participants within institutions)
Results

- Three interaction patterns obtained by LCA

- Conditional response probabilities
 - High interaction with faculty and peers: 58%
 - High interaction with peers only: 14%
 - Low interaction with faculty and peers: 28%
Results

- **No difference** in interaction patterns **by gender**, \(\chi^2 (2, 261) = 0.89, p = 0.642. \)
- **Significant difference** in interaction patterns **by international status**, \(\chi^2 (2, 261) = 28.79, p < 0.001. \)

Relations between interaction patterns and demographic characteristics

- **Domestic students (N=206)**
 - High interaction with faculty and peers: 64%
 - High interaction with peers only: 29%
 - Low interaction with faculty and peers: 7%

- **International students (N=55)**
 - High interaction with faculty and peers: 34%
 - High interaction with peers only: 33%
 - Low interaction with faculty and peers: 33%
Results

- Effects of interaction patterns on research self-efficacy and research skills
 - No significant main or interaction effects on research self-efficacy
 - Significant interaction effect of gender and interaction patterns on research skills
Proposition 2: Publications

THE AUTHOR LIST: GIVING CREDIT WHERE CREDIT IS DUE

The first author
Senior grad student on the project. Made the figures.

The second author
Grad student in the lab that has nothing to do with this project, but was included because he/she hung around the group meetings (usually for the food).

The third author
First year student who actually did the experiments, performed the analysis and wrote the whole paper. Thinks being third author is “fair”.

The middle authors
Author names nobody really reads. Reserved for undergrads and technical staff.

The second-to-last author
Ambitious assistant professor or post-doc who instigated the paper.

The last author
The head honcho. Hasn’t even read the paper but, hey, he got the funding, and his famous name will get the paper accepted.

Socialization Does Not Drive Productivity
(Roksa et al., in press; RSE)
Faculty Mentors
Mentorship

- **Faculty advisor** is considered the most critical agent of the socialization process.
- Doctoral advisor-advisee relationship can be conceptualized as a *cognitive apprenticeship*.
- Positive advising relationships increase *research productivity (i.e., publication) and degree completion* (Green & Bauer, 1995; Paglis et al., 2006)
- Less is known about
 - what contributes to positive relationships between doctoral students and their advisors
 - how advising relationships affect *individual students’ research skills*
 - the extent to which both “cognitive” and “apprenticeship” are evident (Maher et al., 2013; Walker et al., 2009)
Mentorship

Prof. Rivera, is there a time we can meet to discuss my thesis?

Ping! Reply from Prof. Rivera!

Tajel, I have about 20 minutes right now. After that I'll be out of the country for the next 5 months.

20 minutes. Here I come!!

I must admit, Tajel, I haven't read that last draft you sent me.

NOR have I read ANY of the multiple e-mails, notes, or papers you've left me.

In other words, I have no idea what's going on with you or your life.

Can you give me the five-minute version?

It'll take me longer than five minutes to tell you what I'm thinking right now.

Four minutes now.
Proposition 3:

Advisor-related factors
1) Reputation of advisor
2) Intellectual compatibility
3) Psychological support
4) Career development support
5) Academic support

Satisfaction with their advising relationship

Motivational beliefs
1) Research self-efficacy
2) Sense of belonging

Performance gains in research skills (Y2-Y1)
Measures (Jeong et al., 2018b; AERA)

Advisor-related factors (23 items)

Satisfaction with their advising relationship (7 items)

Research self-efficacy (10 items)

Sense of belonging (3 items)

Performance gains in research skills (13 skills)

Graduate Advising Survey for Doctoral Students (GASDS) Barnes et al. (2011)

“To what extent do you feel you can observe and collect data?”
Kardash (2000)

“I feel that I am a member of the lab/research group community”
Bollen & Hoyle (1990)

Written research proposals or reports using a rubric
Feldon et al. (2011)
Analyses

Exploratory factor analysis (EFA) (principal components analysis)

Advisor-related factors
1) Reputation of advisor
2) Intellectual compatibility
3) Psychological support
4) Career development support
5) Academic support

Regression analyses (nesting participants within institutions/gender-group comparisons)

Satisfaction with their advising relationship

Motivational beliefs
1) Research self-efficacy,
2) Sense of belonging

Performance gains in research skills (Y2-Y1)
Results

- Advisor-related factors predicting student satisfaction with advisor

Regression Coefficients (β) for each linear relationship

- Psychological support
- Academic support
- Intellectual compatibility
- Career development support
- Reputation of advisor

Statistically significant
Results

- Advisor-related factors predicting research self-efficacy

Regression Coefficients (β) for each linear relationship

- Psychological support
- Academic support
- Intellectual compatibility
- Career development support
- Reputation of advisor

Statistically significant
Results

- Advisor-related factors predicting sense of belonging

Regression Coefficients (β) for each linear relationship

- Psychological support
- Academic support
- Intellectual compatibility
- Career development support
- Reputation of advisor
- Statistically significant
Results

- **Advisor-related factors** predicting performance gains in research skills

Regression Coefficients (β) for each linear relationship

![Graph showing regression coefficients for different factors including psychological support, academic support, intellectual compatibility, career development support, and reputation of advisor. The graph includes lines for full sample, females, and males, with markers indicating statistically significant results.](image-url)
Summary of Results

<table>
<thead>
<tr>
<th></th>
<th>Satisfaction with advisor</th>
<th>Motivational beliefs</th>
<th>Performance gains in research skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Research self-efficacy</td>
<td>Sense of belonging</td>
</tr>
<tr>
<td>Psychological support</td>
<td>Full Female Male</td>
<td>Full Female</td>
<td>Full</td>
</tr>
<tr>
<td>Academic support</td>
<td>Full Female Male</td>
<td></td>
<td>Full Male</td>
</tr>
<tr>
<td>Intellectual compatibility</td>
<td>Full Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Career development support</td>
<td>Full Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reputation of advisor</td>
<td>Full</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

- Well-established variables positively predict advisor satisfaction but have little or no associations with other socialization outcomes.
- The traditional cognitive apprenticeship model may not reflect the varied influences on doctoral student development (Feldon et al., 2015).
- Cascading mentorship (e.g., postdoctoral researchers, senior peers) may drive central figures in doctoral students’ day-to-day experiences (Golde et al., 2009).
Faculty Mentor Perspectives (Feldon et al., 2015, AERJ)

Interviewed 74 intact mentor-mentee pairs

Most pairs mentioned unrelated research skills as strengths or weaknesses
When pairs did align...

Roughly half disagreed on traits as strength or weakness
Mismatches

Graduate Student

“I don’t feel really comfortable with me being pretty much on my own right now. But right now I really describe myself as a weak researcher who is striving to become a stronger one.”

Research Mentor

“She understands fully the concepts that she does need to design and complete a study. So, I would say she is strong.”
Agreement: Mentor Perception and Mentee Performance (Fall)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro./ Context</td>
<td>3 / 6</td>
<td>5 / 11</td>
<td></td>
<td></td>
<td></td>
<td>7 / 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testable Hypothesis</td>
<td>3 / 10</td>
<td>2 / 4</td>
<td>2 / 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid./Reliability</td>
<td>3 / 10</td>
<td>3 / 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. Design</td>
<td>5 / 10</td>
<td>3 / 4</td>
<td></td>
<td></td>
<td></td>
<td>8 / 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Selection</td>
<td>5 / 10</td>
<td>1 / 4</td>
<td>2 / 3</td>
<td>0 / 6*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td>6 / 10</td>
<td>2 / 4</td>
<td>1 / 2</td>
<td>1 / 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussion/Conclusion</td>
<td>4 / 10</td>
<td>2 / 4</td>
<td>1 / 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limitations/Significance</td>
<td>4 / 10</td>
<td>5 / 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Congruent</td>
<td>43.3%</td>
<td>41.7%</td>
<td>45.5%</td>
<td>53.6%</td>
<td>50.0%</td>
<td>58.3%</td>
<td>53.6%</td>
<td>0.0%</td>
<td>53.3%</td>
</tr>
</tbody>
</table>
Agreement: Mentor Perception and Mentee Performance (Spring)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro./ Context</td>
<td>5 / 9</td>
<td>3 / 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 / 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testable Hypothesis</td>
<td>1 / 1</td>
<td>0 / 0</td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid./Reliability</td>
<td>1 / 1</td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. Design</td>
<td>0 / 1</td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 / 0</td>
</tr>
<tr>
<td>Data Selection</td>
<td>0 / 0</td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td>1 / 1</td>
<td>0 / 0</td>
<td>0 / 0</td>
<td></td>
<td></td>
<td>0 / 0</td>
<td></td>
<td></td>
<td>0 / 6*</td>
</tr>
<tr>
<td>Discussion/Conclusion</td>
<td>1 / 1</td>
<td>0 / 0</td>
<td>0 / 0</td>
<td>0 / 0</td>
<td></td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limitations/Significance</td>
<td>1 / 1</td>
<td>6 / 9</td>
<td>0 / 0</td>
<td>0 / 0</td>
<td></td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prim. Lit.</td>
<td></td>
<td>5 / 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 / 7</td>
</tr>
<tr>
<td>Mean Congruent</td>
<td>83.3%</td>
<td>61.1%</td>
<td>57.1%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>50.0%</td>
<td>0.0%</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Cumulative Advantage
Matthew Effect

- **Initial advantage** tends to beget **further advantage**, and disadvantage further disadvantage, among groups and people through time (Merton, 1968; Rigney, 2010)
- Graduate students who **published early gained legitimacy**, were given **further opportunities** to join new research projects, and had greater interactions with faculty (Gopaul, 2013)
- Students’ **incoming** attitudes, objective abilities, and research-related experience **predicted amount of mentoring** provided during the first year (Green & Bauer, 1995)
- **Initial research experience and mentoring** in Y2 of Ph.D. program each positively **predicted cumulative research productivity** after 4 years (Paglis et al., 2006)
Proposition 4:

Access to mentorship and research opportunities

Initial levels of research skill
(1) Prior research experience
(2) Scientific reasoning
(3) Measured skills

Greater gains in research skills
Measures
(Feldon et al., 2016; *AERJ*)

- Prior research experience (survey)
- Lawson’s Test of Scientific Reasoning
- ACT Test of Science Reasoning
- Rubric pre- and post scores
High performers vs. low performers

- Participants were classified as high or low based on median split for each of 10 skills
- Instances of high and low summed
 - $Sum > 5$ “highs” = high performer ($n = 36$)
 - $Sum > 5$ “lows” = low performer ($n = 39$)
 - 20 participants excluded for both sums < 5
- MANCOVA
 - IV: High vs. low
 - Covariates: prior research experience; scientific reasoning; rubric pre-score
 - DV: Rubric post score
Quantitative Results

<table>
<thead>
<tr>
<th></th>
<th>Mean (High)</th>
<th>Mean (Low)</th>
<th>SD (High)</th>
<th>SD (Low)</th>
<th>Mean Difference</th>
<th>Cohen's d</th>
<th>% Pop. Sig.</th>
<th>p-value (1-tail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2.219</td>
<td>1.953</td>
<td>0.504</td>
<td>0.486</td>
<td>0.267</td>
<td>0.54</td>
<td>0.890</td>
<td>0.029</td>
</tr>
<tr>
<td>Use of Lit.</td>
<td>1.213</td>
<td>0.549</td>
<td>0.614</td>
<td>0.695</td>
<td>0.664</td>
<td>1.01</td>
<td>1.000</td>
<td>0.001</td>
</tr>
<tr>
<td>Hypotheses</td>
<td>0.833</td>
<td>0.392</td>
<td>0.453</td>
<td>0.532</td>
<td>0.442</td>
<td>0.89</td>
<td>1.000</td>
<td>0.003</td>
</tr>
<tr>
<td>Reliability</td>
<td>1.855</td>
<td>1.360</td>
<td>0.574</td>
<td>0.636</td>
<td>0.495</td>
<td>0.82</td>
<td>0.960</td>
<td>0.002</td>
</tr>
<tr>
<td>Design</td>
<td>0.702</td>
<td>0.261</td>
<td>0.471</td>
<td>0.444</td>
<td>0.441</td>
<td>0.96</td>
<td>1.000</td>
<td>0.002</td>
</tr>
<tr>
<td>Data Selection</td>
<td>0.226</td>
<td>-0.170</td>
<td>0.430</td>
<td>0.588</td>
<td>0.396</td>
<td>0.77</td>
<td>1.000</td>
<td>0.008</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>0.660</td>
<td>0.173</td>
<td>0.573</td>
<td>0.601</td>
<td>0.487</td>
<td>0.83</td>
<td>1.000</td>
<td>0.006</td>
</tr>
<tr>
<td>Data Present.</td>
<td>-0.509</td>
<td>-0.976</td>
<td>0.643</td>
<td>0.873</td>
<td>0.467</td>
<td>0.61</td>
<td>1.000</td>
<td>0.026</td>
</tr>
<tr>
<td>Conclusions</td>
<td>2.624</td>
<td>2.265</td>
<td>0.697</td>
<td>0.582</td>
<td>0.359</td>
<td>0.56</td>
<td>1.000</td>
<td>0.032</td>
</tr>
<tr>
<td>Limitations</td>
<td>4.477</td>
<td>3.969</td>
<td>0.775</td>
<td>0.546</td>
<td>0.508</td>
<td>0.76</td>
<td>1.000</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Qualitative Findings

■ Advisor Relationship
 - **Strong, positive relationships across both groups**
 ■ Most relationships described as close
 ■ Advisors approachable, available, and ready to assist students’ research efforts
 ■ All participants reported that advisors expected research activities
 - **High performers’ advisors held clear expectations of self-direction and productivity**
 - **Low performers’ advisors held more flexible expectations**
Qualitative Findings

- Research Activities
 - High expectations of research activity across both groups
 - Co-authoring with advisors did not differ across groups
 - Collaborating with faculty other than advisors was more common with high performers
Broader Themes: Independence

Low Performers

“I am just following my advisor and he is teaching me everything”

“We come up with experiments, what to do, what not to do”

“Big decisions are decided by my advisor”

High Performers

“You want to have an idea... he wants you to try to figure it out on your own first”

“There’s a lot of independence involved...a lot expected of you”

“He expects I will figure it out, then I bring to him what I have and he critiques it”
Broader Themes: Derived Meaning

Low Performers

“All I had to do was watch this screen. We had these mice. I counted how many squares they crossed”

“I focused on learning how to manipulate the instruments and just focused on the experiments”

“We keep changing experiments and you do it over and over again.”

High Performers

“The lab works on the main project and I have taken a piece of that as my dissertation. I’m the primary mover of those data”

“By having contributed to so many things, I’ve become a resource to...our lab”

“I’ve learned a lot of new techniques so I’ve enhanced my capabilities.”
Proposition 5:
Experiences by First-Gen status (Roksa et al., 2018; JHE)

<table>
<thead>
<tr>
<th></th>
<th>First generation</th>
<th>Continuing generation</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.56</td>
<td>0.62</td>
<td>ns</td>
</tr>
<tr>
<td>Underrepresented racial/ethnic minority</td>
<td>0.28</td>
<td>0.13</td>
<td>**</td>
</tr>
<tr>
<td>Predoctoral experiences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific reasoning score</td>
<td>18.92</td>
<td>20.08</td>
<td>*</td>
</tr>
<tr>
<td>Undergraduate research experience (months)</td>
<td>15.45</td>
<td>17.95</td>
<td>ns</td>
</tr>
<tr>
<td>R1 undergraduate institution (%)</td>
<td>0.27</td>
<td>0.42</td>
<td>**</td>
</tr>
<tr>
<td>Doctoral experiences Year 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in scholarly activities (%)</td>
<td>0.41</td>
<td>0.37</td>
<td>ns</td>
</tr>
<tr>
<td>Interactions with faculty and peers (%)</td>
<td>0.79</td>
<td>0.75</td>
<td>ns</td>
</tr>
<tr>
<td>Satisfaction with advisor</td>
<td>2.53</td>
<td>2.49</td>
<td>ns</td>
</tr>
<tr>
<td>Sense of belonging</td>
<td>8.69</td>
<td>8.23</td>
<td>ns</td>
</tr>
<tr>
<td>Research-related resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High research intensity (%)</td>
<td>0.38</td>
<td>0.47</td>
<td>ns</td>
</tr>
<tr>
<td>Research infrastructure</td>
<td>2.73</td>
<td>2.67</td>
<td>ns</td>
</tr>
<tr>
<td>Doctoral experiences Year 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in scholarly activities (%)</td>
<td>0.56</td>
<td>0.52</td>
<td>ns</td>
</tr>
<tr>
<td>Interactions with faculty and peers (%)</td>
<td>0.80</td>
<td>0.78</td>
<td>ns</td>
</tr>
<tr>
<td>Satisfaction with advisor</td>
<td>2.70</td>
<td>2.70</td>
<td>ns</td>
</tr>
<tr>
<td>Sense of belonging</td>
<td>8.96</td>
<td>9.03</td>
<td>ns</td>
</tr>
<tr>
<td>Research-related resources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High research intensity (%)</td>
<td>0.38</td>
<td>0.47</td>
<td>ns</td>
</tr>
<tr>
<td>Research infrastructure</td>
<td>2.76</td>
<td>2.71</td>
<td>ns</td>
</tr>
<tr>
<td>Doctoral experiences Year 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in scholarly activities (%)</td>
<td>0.64</td>
<td>0.61</td>
<td>ns</td>
</tr>
<tr>
<td>Interactions with faculty and peers (%)</td>
<td>0.92</td>
<td>0.92</td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 2. Outcome measures by first-generation status.

<table>
<thead>
<tr>
<th></th>
<th>First generation</th>
<th>Continuing generation</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>High goal commitment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>0.97</td>
<td>0.93</td>
<td>ns</td>
</tr>
<tr>
<td>Year 2</td>
<td>0.82</td>
<td>0.88</td>
<td>ns</td>
</tr>
<tr>
<td>Year 3</td>
<td>0.90</td>
<td>0.88</td>
<td>ns</td>
</tr>
<tr>
<td>High institutional commitment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>0.62</td>
<td>0.55</td>
<td>ns</td>
</tr>
<tr>
<td>Year 2</td>
<td>0.57</td>
<td>0.56</td>
<td>ns</td>
</tr>
<tr>
<td>Year 3</td>
<td>0.63</td>
<td>0.56</td>
<td>ns</td>
</tr>
<tr>
<td>Research productivity (any publications)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>0.30</td>
<td>0.31</td>
<td>ns</td>
</tr>
<tr>
<td>Year 2</td>
<td>0.42</td>
<td>0.50</td>
<td>ns</td>
</tr>
<tr>
<td>Year 3</td>
<td>0.59</td>
<td>0.62</td>
<td>ns</td>
</tr>
</tbody>
</table>
Scholarly Productivity

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.263</td>
<td>-0.664*</td>
<td>-0.185</td>
</tr>
<tr>
<td></td>
<td>(0.295)</td>
<td>(0.290)</td>
<td>(0.334)</td>
</tr>
<tr>
<td>URM</td>
<td>0.239</td>
<td>0.355</td>
<td>-0.414</td>
</tr>
<tr>
<td></td>
<td>(0.445)</td>
<td>(0.417)</td>
<td>(0.401)</td>
</tr>
<tr>
<td>Female</td>
<td>0.032</td>
<td>0.297</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>(0.279)</td>
<td>(0.227)</td>
<td>(0.291)</td>
</tr>
<tr>
<td>Predoctoral Experiences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific reasoning</td>
<td>-0.038</td>
<td>-0.029</td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.038)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>Undergraduate research experience</td>
<td>-0.002</td>
<td>0.008</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.009)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>R1 undergraduate institution</td>
<td>0.072</td>
<td>-0.127</td>
<td>-0.647*</td>
</tr>
<tr>
<td></td>
<td>(0.220)</td>
<td>(0.255)</td>
<td>(0.292)</td>
</tr>
<tr>
<td>Doctoral Experiences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation in scholarly activities</td>
<td>1.766**</td>
<td>1.571*</td>
<td>1.934**</td>
</tr>
<tr>
<td></td>
<td>(0.663)</td>
<td>(0.687)</td>
<td>(0.737)</td>
</tr>
<tr>
<td>Interactions with faculty and peers</td>
<td>1.679*</td>
<td>-0.460</td>
<td>-0.430</td>
</tr>
<tr>
<td></td>
<td>(0.805)</td>
<td>(0.556)</td>
<td>(0.918)</td>
</tr>
<tr>
<td>Satisfaction with advisor</td>
<td>0.236</td>
<td>-0.249</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>(0.333)</td>
<td>(0.434)</td>
<td>(0.346)</td>
</tr>
<tr>
<td>Sense of belonging</td>
<td>-0.027</td>
<td>0.104</td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
<td>(0.089)</td>
<td>(0.090)</td>
</tr>
</tbody>
</table>
Supplemental interventions
Growing Popularity of Short Format Interventions

- Boot Camps (aka “nanocourses”)
 - 2 days - 2 weeks long
- Summer Bridge Programs
 - 4-6 weeks long
- Typically focus on mathematical computing and statistical analysis
 - *May also target: research design, scientific writing*
- NSF and NIH currently have $27.8 million in active awards supporting these types of interventions
High Levels of Enthusiasm and Endorsement

Major Rationales for Use

- Accelerate graduate student skill development
- Increase the efficiency of curriculum
 - Finish coursework earlier
 - Get students into labs for supervised research faster
- Develop skills that students may not pick up along the way
However...

- Only two sources of supporting data
 - Anecdotal enthusiasm (Vale et al., 2012; Gutlerner & Van Vactor, 2013)
 - Post-only surveys of student satisfaction (Stefan et al., 2015)

- No control or comparison group
- No measures of learning
- No measures of impact on socialization
- No measures of scholarly productivity
Measures (Feldon et al., 2018; *PNAS*)

- Demographics
- Research Experience Self-Rating scale (self-efficacy measure, Kardash, 2000)
- Rubric-scored writing samples (intraclass correlations ≥ 0.75 for all planks)
- Counts of peer-reviewed journal articles, conference papers, and published abstracts
- Weidman & Stein’s (2003) instrument eliciting perceptions of department collegiality

Total N = 294; 48 (16.3%) indicated via survey participation in boot camp or bridge program during summer preceding or following first year of Ph.D. program
Measures

- Campus Climate and Commitment Survey (perceptions of academic and intellectual development, PhD goal commitment, and institutional commitment; Nora & Cabrera, 1996)
- Perceived Cohesion Scale (sense of belonging to the research community; Bollen & Hoyle, 1990)
- Graduate Advising Survey for Doctoral Students (function of advisor and time to degree; Barnes et al., 2011)
- Research Infrastructure subscale of the Student Research Experience Questionnaire (Ginns et al., 2009)
Statistical Analysis

- Compared outcomes on all measures in Year 1, Year 2, Y1-Y2 gains
 - 115 separate comparisons
 - Accounted for multiple comparisons using False Discovery Rate (Benjamini & Hochberg, 1995) which is more liberal than Bonferroni correction

- Analyses conducted using Mplus 7.4
 - Controlled for nesting within institution to prevent biased parameter estimates
 - Used the multiple-group analysis function to ensure that the assumption of homogeneity of covariate regression slopes was met through parameter estimate constraints while appropriately handling missing data
 - Gender used as covariate
Findings (part 1)

- Across 115 separate comparisons, only 2 had \(p < 0.05 \)
 - \# of abstracts published in Y2
 - Gain in \# of abstracts published from Y1 to Y2

- BUT...
 - Differences favored participants who did not participate in a boot camp or bridge program
 - Differences nonsignificant after controlling for familywise error with FDR
 - Monte Carlo simulations were \(\leq 73\% \) rejection of null hypothesis
 - Therefore results unlikely to be due to small sample or sampling bias
Findings (part 1)

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Coefficient</th>
<th>p-value</th>
<th>Cohen's d</th>
<th>% Significant in Monte Carlo Simulation</th>
<th>FDR Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Abstracts (gain)</td>
<td>0.196</td>
<td>0.002</td>
<td>0.47</td>
<td>73.3%</td>
<td>0.0004348</td>
</tr>
<tr>
<td>Published Abstracts (T2)</td>
<td>0.183</td>
<td>0.009</td>
<td>0.41</td>
<td>68.0%</td>
<td>0.0008696</td>
</tr>
<tr>
<td>Student Scholarly Encouragement (T1)</td>
<td>0.090</td>
<td>0.056</td>
<td>0.22</td>
<td>30.0%</td>
<td>0.0013043</td>
</tr>
<tr>
<td>Perceived Cohesion/Sense of Belonging (T1)</td>
<td>0.584</td>
<td>0.056</td>
<td>0.33</td>
<td>54.3%</td>
<td>0.0017390</td>
</tr>
<tr>
<td>Research Infrastructure (T2)</td>
<td>0.139</td>
<td>0.073</td>
<td>0.42</td>
<td>59.4%</td>
<td>0.0021739</td>
</tr>
<tr>
<td>Department Collegiality (T2)</td>
<td>0.198</td>
<td>0.097</td>
<td>0.28</td>
<td>41.6%</td>
<td>0.0026087</td>
</tr>
<tr>
<td>Perceived Cohesion/Sense of Belonging (T2)</td>
<td>0.462</td>
<td>0.098</td>
<td>0.25</td>
<td>36.1%</td>
<td>0.0030435</td>
</tr>
</tbody>
</table>
Findings (part 2)

■ Rival hypothesis:
 - *Boot camps may target “at-risk” students (and therefore NSD is a positive outcome)*

■ Re-ran analyses including additional covariates:
 - *Underrepresented racial/ethnic minority status*
 - *International student status*
 - *Quantity of undergraduate research experience*
Findings (part 2)

- Across 115 separate comparisons, only 4 had $p < 0.05$
 - # of abstracts published in Y2
 - Gain in # of abstracts published from Y1 to Y2
 - Student Scholarly Encouragement
 - Access to Research Infrastructure

- **BUT...**
 - Differences favored participants who did not participate in a boot camp or bridge program
 - Differences nonsignificant after controlling for familywise error with FDR
 - Monte Carlo simulations were $\leq 67\%$ rejection of null hypothesis
 - Therefore results (more) unlikely to be due to small sample or sampling bias
Findings (part 2)

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Coefficient</th>
<th>p-value</th>
<th>Cohen's d</th>
<th>Percent Significant in Monte Carlo Simulation</th>
<th>FDR Critical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Abstracts (gain)</td>
<td>0.187</td>
<td>0.005</td>
<td>0.45</td>
<td>67.1%</td>
<td>0.0004348</td>
</tr>
<tr>
<td>Published Abstracts (T2)</td>
<td>0.164</td>
<td>0.022</td>
<td>0.38</td>
<td>57.4%</td>
<td>0.0008696</td>
</tr>
<tr>
<td>Student Scholarly Encouragement (T1)</td>
<td>0.104</td>
<td>0.024</td>
<td>0.25</td>
<td>37.0%</td>
<td>0.0013043</td>
</tr>
<tr>
<td>Research Infrastructure (T2)</td>
<td>0.149</td>
<td>0.048</td>
<td>0.46</td>
<td>64.0%</td>
<td>0.0017391</td>
</tr>
<tr>
<td>Perceived Cohesion/Sense of Belonging (T1)</td>
<td>0.547</td>
<td>0.065</td>
<td>0.31</td>
<td>46.6%</td>
<td>0.0021739</td>
</tr>
<tr>
<td>Department Collegiality (T2)</td>
<td>0.212</td>
<td>0.077</td>
<td>0.31</td>
<td>44.9%</td>
<td>0.0026087</td>
</tr>
<tr>
<td>Research Infrastructure (gain)</td>
<td>0.133</td>
<td>0.083</td>
<td>0.46</td>
<td>63.2%</td>
<td>0.0030435</td>
</tr>
</tbody>
</table>
Discussion

- Findings similar to the few available studies of undergraduate bridge programs (Barnett et al., 2012; Cabrera, 2013; DeRoma et al. 2009; Gleason et al., 2010; Murphy et al., 2010; Walpole et al. 2008; Wathington et al., 2011)

- Two possible explanations for findings:
 - Spaced vs. massed practice effects
 - Targeted topics inappropriate for early career Ph.D. students
 - Kiley & Wisker (2009) and Timmerman et al. (2013) provide evidence that research skills develop in sequence
 - Per Timmerman et al., data analysis skills among the last to develop
“I had,” he said, “come to an entirely erroneous conclusion which shows, my dear Watson, how dangerous it always is to reason from insufficient data.”

—Sherlock Holmes, The Adventure of the Speckled Band
Acknowledgements

Michelle Maher, James Peugh, Josipa Roksa, Kimberly Griffin, Soo Jeong, Alok Shenoy

The work presented here was supported in part by the National Science Foundation under DGE 1760894, DGE 1431234, DGE 1431290, and DRL 0723686.